§ 1065.365 - (5) Span the FID analyzer using a span gas that you use during emission testing. - (6) Check the zero response of the FID analyzer using the zero gas used during emission testing. If the mean zero response of 30 seconds of sampled data is within $\pm 0.5\%$ of the span reference value used in paragraph (d)(5) of this section, then proceed to the next step; otherwise restart the procedure at paragraph (d)(4) of this section. - (7) Check the analyzer response using the span gas that has the minimum concentration of O_2 expected during testing. Record the mean response of 30 seconds of stabilized sample data as $\mathcal{X}O_{\text{CMIMPC}}$. - (8) Check the zero response of the FID analyzer using the zero gas used during emission testing. If the mean zero response of 30 seconds of stabilized sample data is within $\pm 0.5\%$ of the span reference value used in paragraph (d)(5) of this section, then proceed to the next step; otherwise restart the procedure at paragraph (d)(4) of this section. - (9) Check the analyzer response using the span gas that has the average concentration of O_2 expected during testing. Record the mean response of 30 seconds of stabilized sample data as $x_{O2avgHC}$. - (10) Check the zero response of the FID analyzer using the zero gas used during emission testing. If the mean zero response of 30 seconds of stabilized sample data is within $\pm 0.5\%$ of the span reference value used in paragraph (d)(5) of this section, proceed to the next step; otherwise restart the procedure at paragraph (d)(4) of this section. - $(\bar{1}1)$ Check the analyzer response using the span gas that has the maximum concentration of O_2 expected during testing. Record the mean response of 30 seconds of stabilized sample data as $x_{O2maxHC}$. - (12) Check the zero response of the FID analyzer using the zero gas used during emission testing. If the mean zero response of 30 seconds of stabilized sample data is within $\pm 0.5\%$ of the span reference value used in paragraph (d)(5) of this section, then proceed to the next step; otherwise restart the procedure at paragraph (d)(4) of this section. - (13) Calculate the percent difference between $x_{\rm O2maxHC}$ and its reference gas - concentration. Calculate the percent difference between $x_{\rm O2avgHC}$ and its reference gas concentration. Calculate the percent difference between $x_{\rm O2minHC}$ and its reference gas concentration. Determine the maximum percent difference of the three. This is the $\rm O_2$ interference. - (14) If the O_2 interference is within $\pm 2\%$, the FID passes the O_2 interference verification; otherwise perform one or more of the following to address the deficiency: - (i) Repeat the verification to determine if a mistake was made during the procedure. - (ii) Select zero and span gases for emission testing that contain higher or lower O_2 concentrations and repeat the verification. - (iii) Adjust FID burner air, fuel, and sample flow rates. Note that if you adjust these flow rates on a THC FID to meet the O_2 interference verification, you have reset $RF_{\rm CH4}$ for the next $RF_{\rm CH4}$ verification according to §1065.360. Repeat the O_2 interference verification after adjustment and determine $RF_{\rm CH4}$. - (iv) Repair or replace the FID and repeat the O_2 interference verification. - (v) Demonstrate that the deficiency does not adversely affect your ability to demonstrate compliance with the applicable emission standards. - (15) For analyzers with multiple ranges, you need to perform the procedure in this paragraph (d) only on a single range. [70 FR 40516, July 13, 2005, as amended at 73 FR 37309, June 30, 2008; 79 FR 23770, Apr. 28, 2014] # § 1065.365 Nonmethane cutter penetration fractions. (a) Scope and frequency. If you use a FID analyzer and a nonmethane cutter (NMC) to measure methane (CH₄), determine the nonmethane cutter's penetration fractions of CH₄, PF_{CH_4} , and ethane, $PF_{C_2}H_{\epsilon}$. As detailed in this section, these penetration fractions may be determined as a combination of NMC penetration fractions and FID analyzer response factors, depending on your particular NMC and FID analyzer configuration. Perform this verification after installing the nonmethane cutter. Repeat this verification within 185 days of ### **Environmental Protection Agency** testing to verify that the catalytic activity of the cutter has not deteriorated. Note that because nonmethane cutters can deteriorate rapidly and without warning if they are operated outside of certain ranges of gas concentrations and outside of certain temperature ranges, good engineering judgment may dictate that you determine a nonmethane cutter's penetration fractions more frequently. - (b) Measurement principles. A nonmethane cutter is a heated catalyst that removes nonmethane hydrocarbons from an exhaust sample stream before the FID analyzer measures the remaining hydrocarbon concentration. An ideal nonmethane cutter would have a CH₄ penetration fraction, PF_{CH4} , of 1.000, and the penetration fraction for all other nonmethane hydrocarbons would be 0.000, as represented by $PF_{\rm C2H6}$. The emission calculations in §1065.660 use the measured values from this verification to account for less than ideal NMC performance. - (c) System requirements. We do not limit NMC penetration fractions to a certain range. However, we recommend that you optimize a nonmethane cutter by adjusting its temperature to achieve a $PF_{CH4} > 0.85$ and a $PF_{C2H6} < 0.02$, as determined by paragraphs (d), (e), or (f) of this section, as applicable. If we use a nonmethane cutter for testing, it will meet this recommendation. If adjusting NMC temperature does not result in achieving both of these specifications simultaneously, we recommend that you replace the catalyst material. Use the most recently determined penetration values from this section to calculate HC emissions according to §1065.660 and §1065.665 as applicable. - (d) Procedure for a FID calibrated with the NMC. The method described in this paragraph (d) is recommended over the procedures specified in paragraphs (e) and (f) of this section. If your FID arrangement is such that a FID is always calibrated to measure CH₄ with the NMC, then span that FID with the NMC using a CH₄ span gas, set the product of that FID's CH₄ response factor and CH₄ penetration fraction, RFPF_{CH4[NMC-FID]}, equal to 1.0 for all emission calculations, and determine its combined ethane (C₂H₆) response factor and penetration fraction, RFPF $_{\text{C2H6[NMC-FID]}}$ as follows: - (1) Select CH_4 and C_2H_6 analytical gas mixtures and ensure that both mixtures meet the specifications of § 1065.750. Select a CH_4 concentration that you would use for spanning the FID during emission testing and select a C_2H_6 concentration that is typical of the peak NMHC concentration expected at the hydrocarbon standard or equal to the THC analyzer's span value. For CH_4 analyzers with multiple ranges, perform this procedure on the highest range used for emission testing. - (2) Start, operate, and optimize the nonmethane cutter according to the manufacturer's instructions, including any temperature optimization. - (3) Confirm that the FID analyzer meets all the specifications of §1065.360. - (4) Start and operate the FID analyzer according to the manufacturer's instructions. - (5) Zero and span the FID with the nonmethane cutter as you would during emission testing. Span the FID through the cutter by using CH_4 span gas. - (6) Introduce the C_2H_6 analytical gas mixture upstream of the nonmethane cutter. Use good engineering judgment to address the effect of hydrocarbon contamination if your point of introduction is vastly different from the point of zero/span gas introduction. - (7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response. - (8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points. - (9) Divide the mean C₂H₆ concentration by the reference concentration of C_2H_6 , converted to a C_1 basis. The result is the C₂H₆ combined response facpenetration and fraction. RFPF_{C2H6[NMC-FID]}. Use this combined response factor and penetration fraction and the product of the CH₄ response factor and CH₄ penetration fraction, RFPF_{CH4[NMC-FID]}, set to 1.0 in emission calculations according 1065.660(b)(2)(i), 1065.660(c)(1)(i), 1065.665, as applicable. #### § 1065.365 - (e) Procedure for a FID calibrated with propane, bypassing the NMC. If you use a single FID for THC and CH₄ determination with an NMC that is calibrated with propane, C₃H₈, by bypassing the NMC, determine its penetration fractions, PF_{C2H6[NMC-FID]} and PF_{CH4[NMC-FID]}, as follows: - (1) Select CH₄ and C₂H₆ analytical gas mixtures and ensure that both mixtures meet the specifications §1065.750. Select a CH₄ concentration that you would use for spanning the FID during emission testing and select a C₂H₆ concentration that is typical of the peak NMHC concentration expected at the hydrocarbon standard and the C₂H₆ concentration typical of the peak total hydrocarbon (THC) concentration expected at the hydrocarbon standard or equal to the THC analyzer's span value. For CH₄ analyzers with multiple ranges, perform this procedure on the highest range used for emission test- - (2) Start and operate the nonmethane cutter according to the manufacturer's instructions, including any temperature optimization. - (3) Confirm that the FID analyzer meets all the specifications of §1065.360. - (4) Start and operate the FID analyzer according to the manufacturer's instructions. - (5) Zero and span the FID as you would during emission testing. Span the FID by bypassing the cutter and by using C_3H_8 span gas. - (6) Introduce the C_2H_6 analytical gas mixture upstream of the nonmethane cutter. Use good engineering judgment to address the effect of hydrocarbon contamination if your point of introduction is vastly different from the point of zero/span gas introduction. - (7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response. - (8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points. - (9) Reroute the flow path to bypass the nonmethane cutter, introduce the C_2H_6 analytical gas mixture, and repeat the steps in paragraph (e)(7) through (e)(8) of this section. - (10) Divide the mean C_2H_6 concentration measured through the nonmethane cutter by the mean C_2H_6 concentration measured after bypassing the nonmethane cutter. The result is the C_2H_6 penetration fraction, $PF_{C_2H_6[NMC-FID]}$. Use this penetration fraction according to §1065.660(b)(2)(ii), §1065.660(c)(1)(ii), or §1065.665, as applicable. - (11) Repeat the steps in paragraphs (e)(6) through (e)(10) of this section, but with the CH₄ analytical gas mixture instead of C_2H_6 . The result will be the CH₄ penetration fraction, $PF_{CH4[NMC-FID]}$. Use this penetration fraction according to §1065.660(b)(2)(ii), §1065.660(c)(1)(ii), or §1065.665, as applicable. - (f) Procedure for a FID calibrated with CH_4 , bypassing the NMC. If you use a FID with an NMC that is calibrated with CH_4 , by bypassing the NMC, determine its combined ethane (C_2H_6) response factor and penetration fraction, $RFPF_{C2H6[NMC-FID]}$, as well as its CH_4 penetration fraction, $PF_{CH4[NMC-FID]}$, as follows: - (1) Select CH_4 and C_2H_6 analytical gas mixtures and ensure that both mixtures meet the specifications of § 1065.750. Select a CH_4 concentration that you would use for spanning the FID during emission testing and select a C_2H_6 concentration that is typical of the peak NMHC concentration expected at the hydrocarbon standard or equal to the THC analyzer's span value. For CH_4 analyzers with multiple ranges, perform this procedure on the highest range used for emission testing. - (2) Start and operate the nonmethane cutter according to the manufacturer's instructions, including any temperature optimization. - (3) Confirm that the FID analyzer meets all the specifications of § 1065.360. - (4) Start and operate the FID analyzer according to the manufacturer's instructions. - (5) Zero and span the FID as you would during emission testing. Span the FID by bypassing the cutter and by using CH₄ span gas. Note that you must span the FID on a C_1 basis. For example, if your span gas has a methane reference value of $100~\mu mol/mol$, the correct FID response to that span gas is $100~\mu mol/mol$ because there is one carbon atom per CH₄ molecule. ### **Environmental Protection Agency** - (6) Introduce the C_2H_6 analytical gas mixture upstream of the nonmethane cutter. Use good engineering judgment to address the effect of hydrocarbon contamination if your point of introduction is vastly different from the point of zero/span gas introduction. - (7) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response. - (8) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points. - (9) Divide the mean C_2H_6 concentration by the reference concentration of C_2H_6 , converted to a C_1 basis. The result is the C_2H_6 combined response factor and penetration fraction, RFPF $_{\text{C2H6[NMC-FID]}}$. Use this combined response factor and penetration fraction according to \$1065.660(b)(2)(iii), \$1065.660(c)(1)(iii), or \$1065.665, as applicable. - (10) Introduce the CH₄ analytical gas mixture upstream of the nonmethane cutter. Use good engineering judgment to address the effect of hydrocarbon contamination if your point of introduction is vastly different from the point of zero/span gas introduction. - (11) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the nonmethane cutter and to account for the analyzer's response. - (12) While the analyzer measures a stable concentration, record 30 seconds of sampled data. Calculate the arithmetic mean of these data points. - (13) Reroute the flow path to bypass the nonmethane cutter, introduce the CH_4 analytical gas mixture, and repeat the steps in paragraphs (e)(11) and (12) of this section. - (14) Divide the mean CH_4 concentration measured through the nonmethane cutter by the mean CH_4 concentration measured after bypassing the nonmethane cutter. The result is the CH_4 penetration fraction, $PF_{CH4|NMC-FID|}$. Use this penetration fraction according to § 1065.660(b)(2)(iii), 1065.660(c)(1)(iii), or 1065.665, as applicable. [73 FR 37310, June 30, 2008, as amended at 74 FR 56513, Oct. 30, 2009; 79 FR 23770, Apr. 28, 2014] # § 1065.369 H₂O, CO, and CO₂ interference verification for photoacoustic alcohol analyzers. - (a) Scope and frequency. If you measure ethanol or methanol using a photoacoustic analyzer, verify the amount of H_2O , CO, and CO_2 interference after initial analyzer installation and after major maintenance. - (b) Measurement principles. H₂O, CO, and CO₂ can positively interfere with a photoacoustic analyzer by causing a response similar to ethanol or methanol. If the photoacoustic analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification. - (c) System requirements. Photoacoustic analyzers must have combined interference that is within $(0.0\pm0.5)~\mu\text{mol/mol}$. We strongly recommend a lower interference that is within $(0.0\pm0.25)~\mu\text{mol/mol}$. - (d) *Procedure*. Perform the interference verification by following the procedure in §1065.375(d), comparing the results to paragraph (c) of this section. [79 FR 23770, Apr. 28, 2014] ## NO_X and N_2O Measurements # \$ 1065.370 CLD CO₂ and H₂O quench verification. - (a) Scope and frequency. If you use a CLD analyzer to measure NO_X , verify the amount of H_2O and CO_2 quench after installing the CLD analyzer and after major maintenance. - (b) Measurement principles. $\rm H_2O$ and $\rm CO_2$ can negatively interfere with a CLD's $\rm NO_X$ response by collisional quenching, which inhibits the chemiluminescent reaction that a CLD utilizes to detect $\rm NO_X$. This procedure and the calculations in §1065.675 determine quench and scale the quench results to the maximum mole fraction of